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Abstract 

Phenotypic plasticity, the capacity of cells to transition between 
distinct phenotypic and lineage states over time, is a genetically and 
epigenetically encoded trait essential for normal development and 
adult tissue homeostasis. In cancer, phenotypic plasticity programs 
can be deployed aberrantly to enable disease progression and 
acquired therapeutic resistance. Cancer phenotypic plasticity is a 
current barrier to achieving cures for advanced cancers using 
available molecularly targeted therapies. This review summarizes the 
complex and interconnected molecular pathways implicated in 
phenotypic plasticity, both in the context of normal tissue 
homeostasis and cancer. Molecular pathways convergent between 
these contexts are highlighted while pathways enabling plasticity are 
distinguished from those that specify the phenotype of already 
plastic cells. Key unresolved questions in the field are discussed along 
with emerging technologies that may be used to help answer them. 

Keywords: cancer; plasticity; heterogeneity; epigenetics; 
homeostasis; therapeutic resistance 

1. Introduction 

Waddington’s landscape model for cell fate commitment during 
differentiation depicts cells as marbles rolling down a figurative hill of 
differentiation towards a committed cell state (Figure 1) [1]. This 
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metaphorical hill has many forking paths meant to represent the 
multitude of different cell fates totipotent stem cells can assume. 
Waddington’s metaphor implies that cellular differentiation is generally 
unidirectional and stable once cells assume a committed differentiated 
state at the bottom of the hill. In 2006, Takahashi and Yamanaka turned 
Waddington’s hill upside down by demonstrating that differentiated 
cells can be reprogrammed into pluripotent stem cells [2]. The creation 
of induced pluripotent stem cells (iPSCs) is mediated by the induction of 
four key transcription factors (TF)s: Oct3/4, Sox2, C-Myc and Klf4. This 
seminal discovery has led to a greater appreciation for the phenotypic 
plasticity of cells, the ability of committed differentiated cells to change 
to an alternative committed cell state. Extending Waddington’s 
metaphor, changes in committed cell state can occur through three 
general routes, de-differentiation to a less committed multipotent state, 
de-differentiation and redifferentiation to a different committed state, 
or direct transdifferentiation between different committed states [3]. 
These different routes of cell state change have now been documented 
in multiple tissue types, often in response to tissue damage and injury 
[4–7]. Phenotypic plasticity is now recognized as an essential 
component of normal development and tissue homeostasis.  

 

Figure 1. Waddington’s landscape model of cell state commitment. 
Waddington’s metaphor for cell fate commitment describes cells as 
marbles rolling down a hill, becoming increasingly differentiated as they 
reach valleys at the bottom. Valleys represent stable phenotypes. 
Arrows in black depict cellular differentiation toward a committed cell 
state while arrows in red depict routes by which committed cells can 
change cell state due to phenotypic plasticity. This metaphor is applied 
to normal tissue homeostasis on the right, where damaged cells of 
lineage B can be regenerated from cells of lineage A. On the left, the 
metaphor is applied to cancer cells where cancer lineage A is targeted 
therapeutically, and these cancer cells can convert to a therapeutically 
resistant cancer lineage B by deploying phenotypic plasticity programs. 
Created using BioRender.com 
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There is a growing body of data demonstrating that, in certain contexts, 
cancer cells can also exhibit phenotypic plasticity during disease 
progression and as a means to acquire therapeutic resistance [8,9]. 
Evidence of cancer cell plasticity has been documented in multiple cancer 
types [10–14]. This evidence has led to the recognition of phenotypic 
plasticity as a cancer hallmark [15,16]. The molecular machinery facilitating 
cancer phenotypic plasticity involves a complex interplay between genetic 
alterations, lineage-defining TFs, epigenetic regulators, metabolic 
pathways, and crosstalk within the tumor microenvironment [17–20]. 
Research within this growing field is complicated further by observations 
suggesting these interactions are often context dependent. The molecular 
basis of cancer cell plasticity thus remains incompletely defined. 

The definition of phenotypic plasticity remains vague and also context 
dependent. Whiting et al. recently proposed refining the term to mean a 
change in cellular phenotype induced by environmental stimuli as 
opposed changes in phenotype that arise stochastically due to 
transcriptional noise [21]. However, it is often not possible to rule out 
environmental stimuli in the context of a complex normal or tumor tissue 
environment. This review, therefore, does not distinguish between 
stochastic or induced cell state changes, and it defines phenotypic plasticity 
as the capacity of a cell to transition from one meta-stable phenotypic state 
to another. This use of phenotypic plasticity also encompasses lineage 
state changes that are often referred to as lineage plasticity. This review is 
also focused on transcriptional states as a proxy for phenotype because 
transcriptional states are heritable through cell division and because the 
technology for measuring transcriptional states at the single cell level has 
been available for a sufficient length of time to generate a robust body of 
published literature. The goal of this review is to highlight convergent 
molecular pathways that influence cellular plasticity in normal and tumor 
tissue, to identify key unresolved questions, and to briefly note emerging 
technologies that may help answer those questions. 

2. Plasticity in Tissue Homeostasis 

2.1 Facultative stem cells 

Maintaining a balance of multiple cell types is a key part of normal tissue 
homeostasis. To maintain homeostasis in response to damage, some 
tissues contain committed differentiated cells that de-differentiate to a 
less committed multipotent state to assist in the regeneration of 
damaged cell types (Figure 2) [22]. Such facultative stem cells (FSCs) 
have unique chromatin dynamics that enable more facile de-
differentiation under certain conditions like tissue injury and 
regeneration [23–25]. Identifying the molecular drivers important for 
FSC function may yield greater insights into molecular drivers that are 
also involved in a cancer plasticity discussed below. 
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Figure 2. Phenotypic plasticity in normal tissue homeostasis. (A) Evidence for phenotypic plasticity 
and FSC in normal tissue are highlighted by examples in the liver (top left), lung (top right), intestine 
(bottom left) and pancreas (bottom right). When tissue damage occurs, adjacent differentiated cell 
populations can act as FSCs to replace damaged cell types and maintain homeostasis. (B) Evidence 
for phenotypic plasticity in skin wound healing is depicted including (1) EMP of adjacent 
keratinocytes, (2) transdifferentiation of cells from the hair follicle niche and (3) transdifferentiation 
of adipocytes to new myofibroblasts. FSC, facultative stem cell; EMP, epithelial-mesenchymal 
plasticity; BEC, biliary endothelial cell; TLPC, transitional liver progenitor cells; HC, hepatocyte; CBC, 
crypt base columnar cells. Created using BioRender.com 
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Pancreatic islets are small glands comprised of different endocrine cells 
responsible for regulating blood glucose levels. β cells are the main 
producers of insulin and the loss of β islet cells is directly associated with 
the development of diabetes mellitus [26]. In response to injury, it has 
been demonstrated that multiple other islet cell types act as FSCs to 
replace lost β cell populations, although the significance of FSC-based 
repopulation is still debated (Figure 2A) [27,28]. There are many TFs that 
influence the lineage fate of β islet cells. An extensive review of the 
various TFs at play in β cell de-differentiation has been published 
previously [26]. In brief, de-differentiation of β cells is associated with 
decreased activity of traditional β cell lineage drivers such as PDX1 and 
NEUROD1 alongside changing activity in stemness associated TFs like 
Nanog, Hes1 and FoxO1 [29–31]. Previous work suggested that de-
differentiation of β cells is also regulated epigenetically by the PRC2 
complex, among other epigenetic regulatory complexes [32]. 

Lung alveoli are an essential epithelial barrier chronically exposed to 
environmental and pathogenic insults. As a result, homeostasis in this 
tissue requires robust means to replace damaged alveolar cell types. 
Alveoli are comprised of two major cell types: alveolar type I (AT1) cells 
and alveolar type II (AT2) cells [33,34]. AT1 cells account for the majority 
of alveolar surface area and thus are prone to damage. AT2 cells 
function to secrete surfactant proteins and maintain fluid balance in the 
lung, but they can also act as FSCs to replace lost AT1 cells after tissue 
damage (Figure 2A) [35–37]. Single-cell transcriptomics analysis has 
revealed that AT2 cell mediated tissue repair occurs in three distinct 
phases: (1) active cell proliferation (expansion), (2) cell cycle arrest and 
(3) AT2 to AT1 transdifferentiation [38]. Several signaling pathways have 
been implicated in coordinating AT2-to-AT1 transdifferentiation 
including Wnt/β-catenin and Hippo signaling [39–42], pathways that 
have also been implicated in liver FSC function (below). Kaiser et al. 
recently found that p53 also influences AT2/AT1 cell plasticity [43]. 

The intestine is another tissue chronically exposed to the environment 
and is characterized by rapid cell and tissue turnover. LRIG5+ adult stem 
cells at the base of intestinal crypts help support this turnover to 
maintain homeostasis [44–46]. Crypt base columnar (CBC) stem cells 
undergo asymmetric division producing one daughter stem cell and one 
daughter cell destined for differentiation. There remains some debate 
about the main mechanism contributing to regeneration of lost CBC 
populations (i.e., quiescent reserve stem cells, de-differentiation and, 
more recently, isthmus progenitor cells) [47]. Regardless, it has been 
shown previously that various differentiated cells within the intestinal 
epithelial lining can act to replenish lost CBCs following injury (Figure 
2A) [6,48–50]. Plasticity can be partly attributed to rapid epigenetic 
reprogramming of various secretory and epithelial cells following crypt 
injury [51]. The plasticity of the intestinal lining is also maintained 
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through a complex intestinal niche that relies on multiple signaling 
pathways and crosstalk with the immune system. Wnt/β-catenin 
signaling through Sox9 and Tcf4 has been shown to be essential for the 
maintenance of CBC stemness [52–54]. Murata et al. also identified 
ASCL2 as an important TF responsible for mediating the replenishment 
of lost CBCs through de-differentiation [55]. 

One of the main functions of the liver is to detoxify blood collected from 
the digestive system, thus the liver has extensive regeneration 
capabilities to maintain homeostasis during chronic exposure to 
potential toxicants. The liver’s regenerative capacity is attributed to two 
cell types: Hepatocytes (HCs) and Biliary Endothelial Cells (BECs) 
[44,56,57]. There is good evidence to suggest that transdifferentiation 
between HCs and BECs is a critical component of liver regeneration 
(Figure 2B) [58–60]. In particular, Pu et al. has recently demonstrated the 
existence of transitional liver progenitor cells which arise from BECs in 
response to liver injury. Signaling pathways identified as crucial to the 
plasticity of HCs and BECs include TGF-β, Notch, and Hippo signaling 
among others [61–63]. 

2.2 Skin wound healing 

The skin is the major epithelial barrier to the environment and 
maintenance of the skin’s integrity is paramount. When the skin is 
injured, an elaborate dance of epithelial skin cells, immune cells, and 
multiple signaling pathways is triggered to restore homeostasis. The 
process of skin wound healing consists of four general phases: 
hemostasis, inflammation, proliferation and remodeling [64]. These 
phases occur over different time scales and overlap each other. 
Excellent reviews on wound healing can be found elsewhere [65,66]. 
Phenotypic plasticity plays a major role in skin wound healing, 
particularly the epithelial to mesenchymal transition (EMT). EMT allows 
epithelial cells to shed many of their intercellular connections (tight 
junctions, desmosomes, etc.) to acquire greater cell motility required for 
wound healing [67]. EMT has broad impacts on tissue biology beyond 
the skin, including normal embryonic development [68]. While the term 
EMT implies two distinct cell states, there is now significant evidence to 
suggest EMT actually exists as a spectrum of cellular states 
characterized by varying degrees of epithelial and mesenchymal 
features [69,70]. This is commonly referred to as Epithelial-
Mesenchymal Plasticity (EMP). As part of the wound healing process, 
keratinocytes at the wound edge need to mobilize and quickly migrate 
to seal the open wound, beginning the process of re-epithelialization 
(Figure 2B). To do so, keratinocytes under these conditions activate an 
EMP program. Previous work shows that deficiencies in the EMP core TF 
Slug compromises wound closure [71]. The role of other major EMP TFs 
such as Twist1 and Snail are still under investigation. There is evidence 
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to suggest that endothelial to mesenchymal plasticity (EndMP, a process 
analogous to EMP) also plays a significant role in mediating wound 
healing [72,73]. 

The importance of phenotypic plasticity in wound healing extends 
beyond EMP and EndMP. The skin houses several unique structures like 
hair follicles (HF), sebaceous glands, and sweat glands that carry out 
skin functions beyond barrier integrity. Cells originating within these 
structures also play an important role in the resolution of wound 
healing [74]. In particular, cells originating within the HF, the 
interfollicular epidermis, and other skin cell niches have been shown to 
act as reservoirs of FSC from which additional keratinocytes can be 
produced [75–78]. RNA data indicates cells from these different skin 
niches have distinct transcriptional profiles, but their transcriptional 
state converges as they assume the FSC phenotype, supporting the 
existence of substantial plasticity within skin cells [79]. Beyond epithelial 
cells, Shook et al. noted that adipocytes localized to the wound edge also 
alter their lineage to a myofibroblastic state that contribute to 
extracellular matrix remodeling (Figure 2B) [80]. However, the validity 
of this property of adipocytes is still under debate [81]. In a similar vein, 
Parfejevs et al. found that Schwann cells of peripheral glia exhibit 
significant plasticity, facilitating new growth from damaged nerves 
within the wound site [82]. These findings highlight the importance of 
phenotypic plasticity in reepithelialization and remodeling during 
wound healing. 

Many interconnected signaling pathways work together to co-ordinate 
recruitment of immune cells, keratinocyte proliferation and increased 
cellular plasticity during skin would healing (Table 1). EMP is driven by 
multiple signaling pathways including TGFβ, Notch, and Hedgehog 
signaling [83]. EndMP is driven by many of the same signaling pathways 
including TGFβ, Notch, and activation of core EMP TFs like Slug and 
Twist1 [67,73,84–87]. TFs like KLF5 and Sox9 are implicated in enabling 
plasticity amongst skin cells, with Sox9 playing a major role in 
promoting partial lineage transitions in multiple skin cell niches [88,89]. 
To date, transcriptional/epigenetic characterization of wound healing 
has been limited due to the complexity of analyzing chromatin changes 
at a single cell resolution. However, recent studies have highlighted that 
both the proliferative and remodeling phases are characterized by 
distinct chromatin states within different skin cell niches [89,90]. As 
single cell analysis approaches expand to include chromatin and spatial 
information, the major molecular drivers of cellular plasticity in wound 
healing will likely be revealed in time. 
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Table 1. Phenotypic plasticity in homeostatic maintenance. 

Tissue type Plastic cell Molecular drivers 
impacting plasticity 

References 

Pancreas 
β islet cells 
α islet cells 

Nanog*, Hes1 
FoxO1, PRC2 loss [26,29–32] 

Lungs Alveolar type II cells (AT2) 
TGFβ*, Wnt7b 

Yap/Taz, BMP, p53* [38–43] 

Intestines 
Crypt Base Columnar (CBC) 

Stem cells 
Paneth cells 

Wnt/β catenin/Tcf4 
Sox9, ASCL1* 

[52–55] 

Liver Hepatocytes (HC) 
Biliary Endothelial cells (BEC) 

Wnt/β catenin, Yap/Taz 
TGFβ*, Notch1* 

[60–63] 

Skin 
Keratinocytes 

Adipocytes 
Hair Follicle (HF) Niche cells 

Gata6, TGFβ*, Notch* 
Hedgehog, Wnt3a 

KLF5, Sox9 
Slug*, Twist1* 

[70,73,75,78,84–87] 

* Directly associated with cancer phenotypic plasticity. 

3. Plasticity in Neoplasia 

Plasticity plays a crucial role in maintaining homeostasis within normal 
tissues. Plasticity is also exploited in diseased tissue, cancer in particular. 
Phenotypic plasticity is now recognized as a cancer hallmark [15,16]. 
Plasticity can endow cancer cells with robust adaptability, a useful trait 
for advanced cancers that experience unpredictable and highly selective 
environmental pressures during disease progression. For example, 
plasticity can arise in response to therapy, providing a means for some 
cancer cells to adapt and survive therapy to seed acquired resistance. 
Many molecularly targeted cancer therapies are directed towards 
molecules that play some role in normal lineage specification and 
commitment. Inhibiting these molecules in sufficiently plastic cancer 
cells may induce or select for loss of differentiation. In extreme cases, 
such treated cancer cells may reprogram into an alternative lineage 
state no longer dependent on the therapeutic target, rendering those 
cells resistant. Current evidence suggests cancer plasticity may increase 
as more potent molecularly targeted cancer therapies are deployed in 
the clinic [91]. Treatment-associated phenotypic plasticity has now been 
documented in several different cancer types (Table 2). Select examples 
are reviewed below. 
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Table 2. Molecular pathways implicated in cancer phenotypic plasticity. 

Cancer type Lineage variant Molecular drivers References 

Prostate cancer 

Neuroendocrine 
Prostate Cancer (NEPC) 

Rb1 loss, p53 loss, PTEN loss 
ASCL1, SOX2, FOXA2, MYC, 

ONECUT2, MUC1-C 
[92–103] 

Double Negative 
Prostate Cancer (DNPC) 

SOX2, FOXA2, ZNF263, KLF5 [104–106] 

Lung cancer 

Small Cell Lung Cancer 
(SCLC) 

Rb1 loss, p53 loss, PTEN loss 
ASCL1, SOX2, MYC 

[14,96,99,107,108] 

Squamous Cell 
Carcinoma (SCC) 

LBK1 loss 
p63, AKT, MYC, JAK/STAT 

[109–114] 

Epithelial-Mesenchymal 
Plasticity (EMP) 

ASCL1, SNAIL, SLUG 
TWIST, ZEB1/2 

[115,116] 

Melanoma Endothelial-like 
(Vasculogenic Mimicry) 

β-catenin/TCF4 
MYC, TWIST 

[12,117,118] 

Breast cancer 
Basal/Mesenchymal 
Inflammatory Breast 

Cancer (IBC) 

JAK/STAT, SOX10 
ONECUT2, SNAIL, TGF-β 

[13,17,119,120] 

Neuroblastoma 
Adrenergic-

Mesenchymal Plasticity 
SWI/SNF, MYCN, HAND2, 

PHOX2B, GATA3 
[121] 

Pancreatic cancer Stem-like/EMP BRD4, SOX2, SOX5, TWIST, 
NRF2 

[122] 

Liver cancer 
Stem-like 

Hepatocellular 
Carcinoma (HCC) 

SPINK1, E2F2 [123] 

Bladder cancer 
Urothelial-to-Squamous 

Trans differentiation 
FOXA1 loss, GATA3 loss, 

PPARγ loss 
[124] 

Leukemia B-cell Leukemia to T-
cell / Myeloid Leukemia 

Notch Signaling [125,126] 

3.1 Prostate cancer 

Treatment for metastatic prostate adenocarcinoma (PCa) relies on 
targeting androgen receptor (AR) signaling that PCa depends on for 
growth and viability. Androgen-deprivation therapy (ADT) reduces the 
levels of circulating androgens that serve as activating ligands for AR. 
Androgen receptor signaling inhibitors (ARSIs) like enzalutamide target 
AR itself to block its activation. ADT and ARSIs are effective in treating 
most PCa patients, but they are not curative. While multiple genetic 
mechanisms mediate acquired therapeutic resistance, up to 20–25% of 
PCa progressing through AR targeted therapies show evidence of 
phenotypic plasticity, in particular transdifferentiation to 
neuroendocrine prostate cancer (NEPC) lineage variants [127–129]. 
NEPC is highly aggressive and NEPC patient prognosis is dismal because 
effective therapies are not available. Development of NEPC has been 
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linked to the loss of tumor suppressor genes such as RB1, TP53 and 
PTEN [92]. More recently, other key NEPC drivers have also been 
identified including ASCL1 and N-Myc [103,130,131]. AR independent 
lineage variants that lack neuroendocrine differentiation, referred to as 
double negative prostate cancer (DNPC), have also been detected 
clinically. Recent work has identified several key TFs like Sox2, FOXA2, 
ZNF263 and KLF5 that drive DNPC [104–106]. 

3.2 Lung cancer 

Mutations in the epidermal growth factor receptor (EGFR) gene account 
for about 27% of lung adenocarcinoma (LUAD) cases [132,133]. 
Oncogenic mutations in EGFR lead to constitutive activation of this 
receptor kinase which drives increased cell proliferation and survival 
[134]. EGFR tyrosine-kinase inhibitors (EGFR TKIs) are a suite of drugs 
designed to target EGFR tyrosine kinase activity. First line therapy for 
patients with EGFR-mutant LUAD is currently treatment with the third 
generation EGFR TKI Osimertinib [135]. While an effective therapy, 
virtually all patients eventually acquire resistance through multiple on- 
and off-target mechanisms (bypass mutations, additional EGFR 
mutations, etc.) [136]. In a smaller subset of cases, resistance to 
Osimertinib has been linked to phenotypic plasticity. In these patients, 
therapeutic resistance is associated with reprogramming of LUAD cells 
into neuroendocrine lineage variants similar to de novo small cell lung 
cancer (SCLC) [14,108,137]. As in PCa, these treatments associated 
neuroendocrine lineage variants exhibit recurrent mutations in the RB1, 
TP53, and PTEN tumor suppressor genes [14,107]. Furthermore, ASCL1, 
Sox2 and Myc have been identified as possible drivers of 
neuroendocrine plasticity in LUAD [96,99,115]. Additional lung cancer 
lineage variants identified include adeno-to-squamous and adeno-to-
mesenchymal variants [110,113,116]. Loss of functional LBK1 has been 
directly associated with adeno-to-squamous transdifferentiation (AST) 
[109,114]. Myc, AKT and JAK/STAT signaling have also been implicated in 
facilitating AST [110,111]. Hu et al. demonstrated that the 
neuroendocrine TF ASCL1 leads to Osimertinib resistance by promoting 
a more permissive cellular chromatin state and supporting an EMP-
gene expression program [115]. Recent evidence suggests that EMP-
based cell states act as intermediate stepping stones to other variant 
lineage states [138]. ASCL1 promotion of an EMP-gene program may 
thus be an initial step towards neuroendocrine reprogramming. Work 
by Hu et al. and others also highlighted the importance of altered 
chromatin dynamics in mediating phenotypic plasticity in both PCa and 
LUAD [97,101,115,139–141]. 
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3.3 Other cancers 

Some of the earliest evidence for cancer phenotypic plasticity has come 
from the study of patients with melanoma. Advanced melanoma cells 
can exhibit a phenotype that mimics endothelial cells in blood vessels, 
expressing key endothelial cell specific genes and contributing to tumor 
vascularization. This phenomenon is termed ‘vasculogenic mimicry’ 
(VM) and has since been observed in other cancers as well [12,117]. 
Recent studies suggest β-catenin signaling through Tcf-4 drives 
melanoma VM through increased expression of EMP and pluripotency 
TFs [118]. Triple negative breast cancer (TNBC) is characterized by the 
absence of HER2, estrogen receptor, and progesterone receptor 
expression. Certain subsets of TNBC display remarkable capacity for 
lineage infidelity. For example, metaplastic breast cancer often exhibits 
phenotypic plasticity in the form of EMP and increased stemness [142]. 
More recently, Stevens et al. identified a luminal-to-mesenchymal/basal 
lineage shift in inflammatory breast cancer (IBC) facilitated by JAK-STAT 
signaling and Sox10 [119,143]. In neuroblastoma, adrenergic-
mesenchymal transdifferentiation was found to be dependent on the 
SWI/SNF chromatin remodeling complex [121]. Xu et al. demonstrated 
that targeting ATPases in the SWI/SNF complex causes displacement of 
several core TFs including N-Myc. This suggests a permissive chromatin 
state allows for elaboration of new transcriptional programs to expand 
phenotypic plasticity. Pancreatic Ductal Adenocarcinoma (PDAC) is 
known for its considerable heterogeneity that makes it refractory to 
treatment. Work by Murakami et al. has identified rare PDAC cells 
marked by reactivation of pluripotent TFs, and this reactivation is 
coupled to increased EMP [122]. These stem-like PDAC cells are less 
dependent of oncogenic Yap signaling, suggesting that increased 
stemness and plasticity in a subset of PDAC cells may contribute to 
disease progression in the presence of therapy. Hepatocellular 
carcinoma (HCC) stem cells have previously been implicated in 
therapeutic resistance [144]. More recent work suggests that HCC 
cancer stem cells arise through de-differentiation of bulk HCC tumor 
cells and that this de-differentiation is dependent on the transcriptional 
activity of SPINK1 [123]. In bladder cancer, Warrick et al. determined that 
urothelial and squamous cell states are derived from a common 
precursor [124]. They also identify FOXA1 as a critical lineage TF 
maintaining lineage fidelity. Loss of FOXA1 was found to promote 
epigenetic reprogramming leading to the squamous phenotype, 
supporting the idea that phenotypic plasticity contributes to 
heterogeneity in bladder cancer. 

In summary, phenotypic plasticity and lineage infidelity have clear and 
widespread roles in cancer progression and therapeutic resistance 
(Table 2). As a relatively new cancer hallmark that has only come under 
intense study recently, additional examples of cancer phenotypic 
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plasticity are likely to be found in the future. One reason for this is the 
increasing deployment of single cell technologies that can measure 
heterogeneity between cancer cells within a given tumor, potentially 
over time and space. These technologies are likely to uncover new 
phenotypic cancer cell variants that would otherwise go undetected by 
routine analysis of tissue section histopathology, particularly if they only 
exist transiently. For example, phenotypic plasticity is inherent in the 
drug tolerant persistor (DTP) cells that have been described in 
numerous experimental models of cancer. DTPs are rare cells within a 
homogeneous cancer cell population that survive therapy while the bulk 
of the cancer cells don’t. While these cells exist transiently, they are 
required to facilitate acquired therapeutic resistance by both genetic 
and non-genetic mechanisms. Transient changes in phenotypic states 
have also been detected by single cell approaches in patient tumors as 
they progress from residual disease to progressive disease, mirroring 
dynamic phenotypic plasticity in experimental models [145]. For a more 
in-depth exploration of the DTP field, see the review from Russo et al. 
[146]. As single cell technologies expand further to measure an 
increasingly broader array of molecular changes, dramatic advances in 
our understanding of the molecular basis of phenotypic plasticity are 
likely to be made. 

4. Molecular Determinants of Cancer Plasticity 

Although a great deal has been learned about the molecular 
mechanisms influencing cancer phenotypic plasticity, there remain 
many unanswered questions. Chief among them is which molecular 
pathways control the extent of plasticity itself, as opposed to the 
pathways that direct the phenotype/lineage that plastic cells are likely 
to assume. In the context of cancer this is an important question if the 
goal is to manipulate or target cancer phenotypic plasticity for durable 
therapeutic benefit. The following section is a summary of molecular 
pathways that have been implicated in cancer phenotypic plasticity. 

4.1 Loss of tumor suppressor genes 

Tumor suppressor genes (TSGs) have long been known to play a 
fundamental role in protecting cellular integrity and mitigating 
dysregulated cell proliferation. Of the known TSGs, some appear to have 
context specific roles while others have widespread roles across many 
cancer types. Among the many molecular aberrations that have been 
linked to phenotypic plasticity, loss of key TSG functions is one of the 
most recurrent across different solid cancers (Table 2, Figure 3). 
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Figure 3. Molecular determinants of cancer phenotypic plasticity. 
Phenotypic reprogramming of cancer cells is associated with dramatic 
transcriptional changes, often following the loss of key TSGs. The top 
cell shows a non-plastic, stable cancer cell state in which functional TSGs 
maintain transcriptional stability. The bottom cell shows a TSG-deficient 
cancer cell with heightened phenotypic plasticity. Such cells are 
sensitized to the effects of increased lineage specific TF activity, like EMP 
and pluripotency TFs. These TF can now drive the cancer cell to a new 
phenotypic state. Progressive evolution of phenotypic states promotes 
increasing invasiveness and treatment resistance. TSG, tumor 
suppressor gene; TF, transcription factor; EMP, epithelial-mesenchymal 
plasticity. Created using Biorender.com 
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TP53 encodes the protein p53, a TF whose main function is to regulate 
the cell cycle and programmed cell death in response to various stresses, 
including DNA damage. In this respect, p53 is considered the “guardian 
of the genome” [147]. There is significant evidence to suggest, however, 
that the loss of functional p53 also promotes increased lineage infidelity 
in multiple cancer types. In both PCa and LUAD, loss of p53 is associated 
with lineage reprogramming [14,92,108]. Notably, p53 plays an 
important role in regulating the activity of pluripotent TFs, such as 
Nanog and Sox2, and in regulating DNA methylation of the genome 
[148]. In the absence of p53, increased activity of pluripotency TFs and 
dysregulated DNA methylation contribute to greater phenotypic 
plasticity [148]. p53-mediated regulation of pluripotency TFs is further 
supported by prior evidence indicating p53 restricts reprogramming of 
iPSCs [149]. Previous work from Ku et al. shows a clear role for p53 loss 
in amplifying PCa plasticity [92]. Prostate specific deletion of Pten and 
Rb1 in the mouse PCa that responds to castration, but relapses as NEPC 
with acquisition of spontaneous inactivating Trp53 mutations. 
Engineered mutations of Pten, Rb1 and Trp53 cause PCa that rapidly 
progresses to NEPC. Analogous findings are observed with similarly 
engineered human PCa cell lines [92,95]. More recent work by Chan et 
al. highlights additional lineage states that develop in these mice 
beyond NEPC [93]. As mentioned previously, p53 has also been 
implicated in AT2-to-AT1 transdifferentiation during alveolar injury 
repair [43]. Kaiser et al. also demonstrated that when p53 is lost, there 
is subsequent accumulation of cells with a hybrid AT2-AT1 cancer cell 
state. This data, alongside earlier evidence from the literature, support 
a role for p53 in regulating cancer phenotypic plasticity in addition to its 
canonical roles as a stress responsive regulator of the cell cycle and 
programmed cell death [150,151]. 

The TSG RB1 encodes a transcriptional repressor protein Rb1 and is 
mutated recurrently across a wide variety of cancer types. Rb1’s 
canonical function is cell cycle regulation. Rb1 binds to the E2F family of 
TFs, switching them from transcriptional activators to transcriptional 
repressors, and blocking the expression of genes required for the cell 
cycle. This function is mediated by Rb1’s ability to recruit histone 
deacetylases (HDACs), histone methyltransferases (HMTs), and DNA 
methyltransferase (DNMTs) to E2F target genes and altering chromatin 
near these genes to more transcriptionally repressive states [152]. Rb1, 
like p53, has a variety of additional non-canonical functions that have 
been reviewed elsewhere [153,154] including a role in cancer 
phenotypic plasticity. Rb1 loss of function mutations are highly 
recurrent in treatment associated neuroendocrine cancers that arise 
through reprogramming of PCa and LUAD tumors [14,92,108]. Multiple 
Rb1 molecular functions potentially explain why loss of function drives 
increased plasticity. Rb1 is a central epigenetic hub interacting with 
many complexes that regulate chromatin structure (e.g., SUV39H1, 
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EZH2, etc., reviewed by Guzman et al.) [152,155]. Rb1 has been shown to 
maintain both constitutive heterochromatin (e.g., pericentric and 
telomeric regions, repetitive elements) and facultative heterochromatin 
[156–159]. Since the epigenome must be reconstituted after every S 
phase of the cell division cycle, loss of Rb1-mediated cell cycle control 
may also destabilize the epigenome. Sanidas et al. demonstrated that 
Rb1 interacts with chromatin insulators like CTCF to facilitate chromatin 
organization [160]. Rb1 is also known to repress pluripotency signaling 
networks [161]. Widespread dysregulation of chromatin organization 
and increased activity of pluripotency TFs (e.g., Sox2) in the wake of Rb1 
loss are likely major contributors driving phenotypic plasticity in PCa 
and LUAD [95]. Dean et al. previously showed that Rb1 is responsible for 
repressing the activity of the EMP TF Zeb1 in invasive LUAD [162]. 
Increased Zeb1 activity following Rb1 loss, promoted by a positive 
feedback loop between Ets1 and Zeb1, likely plays a role in exacerbating 
EMP in LUAD. Given recent implications about the contribution of EMP 
in the progression to different cell states, Rb1-mediated repression of 
EMP may be an important safeguard against broader plasticity [138]. 

PTEN encodes a phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase 
whose canonical function is to negatively regulate the PI3K/AKT 
signaling pathway [163,164]. PI3K phosphorylates phosphatidylinositol 
bisphosphate (PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3), 
and PIP3 subsequently facilitates activating phosphorylation of AKT, a 
major intracellular protein kinase that regulates cell growth. PTEN is a 
phosphatase that acts in opposition to PI3K, catalyzing the conversion 
of active PIP3 to inactive PIP2. In doing so, PTEN suppresses continuous 
growth and survival signaling facilitated by active AKT. Loss of function 
PTEN mutations are recurrent in many different types of cancer 
[165,166]. Pertinent to this review, PTEN loss has more recently been 
shown to promote greater phenotypic plasticity. Zhang et al. has found 
that Pten knockout amplifies in vivo tumor heterogeneity of LUAD 
developing in genetically engineered mice lacking functional p53 and 
Rb1 [107]. Transcriptomic profiling of genetically engineered mouse 
model (GEMM) lung tumors deficient for Pten revealed greater inter- 
and intra-tumoral heterogeneity, suggesting PTEN plays a role in 
suppressing phenotypic plasticity. Work from another group implicates 
PTEN in regulating the plasticity of hematopoietic lineages and 
progression to leukemia [167]. Xu et al. demonstrated that PTEN 
enforces B-cell lineages by negatively regulating the activity of PU.1, a 
TF known to regulate chromatin accessibility during the course of 
hematopoiesis [168]. PTEN-null mice exhibit defective B-cell lineage 
differentiation and greater T- and Myeloid-lineage differentiation which 
was found to be mediated through PU.1-altered chromatin accessibility. 
Most importantly, Xu and colleagues identify PTEN-null prepro-B cells as 
a potential precursor to T-lineage acute lymphoblastic leukemia, 
highlighting the significance of PTEN-mediated lineage fidelity in tumor 
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suppression. The study also underlines the importance of PTEN’s non-
canonical roles in guarding against plasticity. PTEN localized to the 
nucleus has been demonstrated to facilitate chromatin condensation 
(through interactions with histone H1), participate in DNA damage 
repair, and promote centromere stability (see Yang and Yin for review) 
[164]. PTEN is also notable in that it forms a positive feedback loop with 
p53 whereby PTEN stabilizes p53 and p53 TF activity promotes increased 
production of PTEN [169,170]. Finally, PTEN activity is negatively 
regulated by core EMP TFs such as Zeb1 and Snail1 [163]. Considering 
PTEN’s role in suppressing plasticity, down regulation of PTEN activity 
by EMP suggest PTEN loss is a potent catalyst for greater plasticity. 

4.2 Transcription factors 

The loss of TSGs appears to be a major factor influencing phenotypic 
plasticity in cancer cells, but not all cancers lacking these TSGs undergo 
detectable phenotypic or lineage state changes. This suggests loss of 
these TSG may enable increased plasticity, but they may not directly 
determine the phenotype or lineage state these plastic cancer cells 
assume. There is extensive evidence to suggest that key lineage 
promoting TFs activate transcriptional programs that determine cell 
state changes and/or lineage stability in the context of phenotypic 
plasticity (Table 2). 

The Myc family of TFs are well established oncogenes. The family 
consists of three members: MYC (C-Myc), MYCN (N-Myc) and MYCL  
(L-Myc). In depth reviews on the history of the Myc family and its 
functions can be found elsewhere [171,172]. In brief, Myc TFs play an 
important role in assembling multi-protein complexes at multiple 
stages of the transcription cycle suggesting Myc TFs are transcriptional 
amplifiers. Upregulation of Myc TFs can promote high transcriptional 
activity that many cancers rely upon for their growth and proliferation 
[173,174]. More recent literature suggests Myc TFs are important 
regulators of phenotypic plasticity. Berger and colleagues have 
previously shown that N-Myc promotes significant transcriptomic and 
epigenetic rewiring in PCa that contributes to NEPC reprogramming 
[100]. In the therapeutic context of castration, N-Myc binds at neural 
lineage genes, alters bivalent H3K4me3 and H3K27me3 histone marks, 
and promotes expression of neural lineage genes. Berger et al. also 
demonstrated functional divergence between C-Myc and N-Myc within 
PCa, suggesting individual members of the Myc family may have distinct 
roles during cancer progression. Work by Wei et al. further cements the 
role of Myc TFs in controlling chromatin dynamics through interactions 
with the key structural organizer CTCF. C-Myc significantly repressed the 
expression of neuroendocrine lineage genes via disruption of enhancer-
promoter chromatin looping [175]. This finding is corroborated by the 
observation from Berger et al., that C-Myc expression decreased as PCa 
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progresses towards NEPC. However, another study has demonstrated 
that overexpression of both C-Myc and AKT in normal prostate epithelial 
cells is sufficient to induce neuroendocrine differentiation [176]. 
Furthermore, Quintanal-Villalonga et al. recently has shown that 
proteasomal degradation of C-Myc by CDC7 inhibits neuroendocrine 
differentiation in LUAD and PCa [99]. The conflicting roles of C-Myc in 
promoting or hindering neuroendocrine differentiation requires further 
study. Recent work by Gardner et al. demonstrates how C-Myc 
upregulation promotes reprogramming of AT2 cells to a 
neuroendocrine phenotype [177]. However, C-Myc is not sufficient for 
neuroendocrine reprogramming because concomitant deletion of p53, 
Rb1 and PTEN is required. This study highlights the co-operative 
interactions between TSG loss and TFs like C-Myc in promoting cancer 
phenotypic plasticity, with TSG loss potentially enabling greater 
transcriptional heterogeneity that sensitizes cells to the effects of 
increased C-Myc activity. Similar roles for C-Myc have been identified in 
other lineage variants (e.g., AST) and in other cancer types (e.g., liver, 
PDAC) [11,110,178]. 

Another major TF that has been connected to phenotypic plasticity is 
Sox2. Like C-Myc, Sox2 is one of the core TFs that together can 
reprogram differentiated cells to iPSCs [2]. Sox2 plays a major role in 
normal development, but can also drive stemness, EMP and 
chemoresistance in cancer [179,180]. Increased Sox2 expression in the 
context of Rb1 and p53 loss has been previously linked to 
neuroendocrine lineage reprogramming in PCa [95]. Importantly, Sox2 
is known to be a pioneer TF, a class of TF that can alter chromatin 
accessibility to facilitate new transcriptional programs (reviewed in 
Hagey et al.) [181]. As such, increased Sox2 activity could open 
previously inaccessible chromatin to enable a wider range of potential 
transcriptional programs, perhaps accounting for its role in iPSC 
reprogramming. In this case, SOX2 can be thought of as a stem-like 
lineage specifying transcription factor that directly enables phenotypic 
plasticity. Given the role of SOX2 in neuronal lineage specification, it may 
also function to influence the phenotype of plastic cells. Consistent with 
this potential role, inhibition of the nuclear transport protein Exportin 1 
decreases Sox2 protein levels and inhibits neuroendocrine 
reprogramming [96]. 

ASCL1 is an important neuronal lineage specifying pioneer TF during 
normal development [182]. ASCL1 has also been implicated in the 
neuroendocrine reprogramming of PCa cells [183] and in defining SCLC 
subtypes [184]. More recent evidence suggests ASCL1 TF activity is 
functionally required for neuroendocrine reprogramming of cancer 
cells. Nouruzi et al. has demonstrated that suppressing ASCL1 
expression reverses neuroendocrine differentiation; this reversal was 
linked to chromatin alterations after loss of EZH2 activity downstream 
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of the UHFR1/AMPK axis [185]. Work from two separate groups indicate 
that abrogation of ASCL1 significantly hinders the progression of PCa to 
NEPC [94,103]. Rodarte et al. noted that tumors with genetic deletion of 
ASCL1 do not undergo neuroendocrine reprogramming, but instead 
assume a more basal epithelial phenotype. Interestingly, Romero et al. 
found that ablation of ASCL1 in organoids prior to implantation yields 
adenocarcinoma tumors with increased AR activity. Conversely, ablation 
of ASCL1 in developed NEPC tumors led to a modest but temporary 
tumor regression. Evidence from these papers suggest ASCL1 is a 
functional driver of neuroendocrine differentiation in NEPC. As 
mentioned earlier, Hu and colleagues have indicated that ASCL1 drives 
plasticity in EGFR-mutant LUAD by increasing chromatin accessibility at 
core EMP TFs like Zeb1 [115]. ASCL1 activity is upregulated during 
therapy, but a mechanism linking treatment to increased ASCL1 has not 
been identified definitively. One potential mechanism identified in PCa 
suggests therapy induces ROR2 signaling that upregulates ASCL1 
expression through CREB signaling [186]. Whether a similar mechanism 
drives ASCL1 expression in LUAD remains to be determined. These 
observations highlight the role of ASCL1 in regulating both transcription 
and chromatin to effect phenotypic plasticity. 

A number of other lineage-defining TFs have been implicated in 
reprogramming of cancer cells to alternative phenotypic and lineage 
states (Table 2). Lineage TF FOXA2 is known to drive neuroendocrine 
differentiation in PCa, both through promotion of KIT pathway activity 
and chromatin rewiring in collaboration with JUN [97,98]. FOXA2 and 
FOXA1 have been shown to promote phenotypic plasticity in NKX2-1+ 
LUAD [187,188]. ONECUT2 is functionally linked to phenotypic plasticity 
in both PCa and breast cancer [101,120]. AST plasticity has been 
connected to the increased activity of the TF p63 in both LUAD and PDAC 
[112,114,189,190]. Zeb1/2, Snail, Slug and Twist are core EMP TFs that 
can drive phenotypic plasticity and therapeutic resistance [70]. Several 
studies support the notion that EMP TFs contribute to an intermediate, 
high plasticity state that can subsequently evolve beyond EMP to 
assume other lineage states like neuroendocrine [13,191,192]. 

4.3 Signaling pathways 

The Janus kinase (JAK) / signal transduction and transcription activation 
(STAT) signaling axis is a major molecular signaling pathway 
responsible for many important functions including regulation of 
inflammation and immunity. IL-6/JAK/STAT3 signaling has also been 
implicated in tumorigenesis for its impact on chronic inflammation, 
metastasis, and immune suppression [193]. Recent evidence suggests 
JAK/STAT signaling also plays an important role in modulating cancer 
phenotypic plasticity. In PCa, JAK/STAT activation increases during 
intermediate stages of lineage reprogramming [93,194]. Furthermore, 
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inhibition of JAK and fibroblast growth factor receptor (FGFR) increases 
AR expression, decreases expression of alternative lineage markers like 
vimentin, and re-sensitizes PCa cells to ARSIs [93]. Notably, JAK/STAT 
activity declines once PCa cells undergo reprogramming to a 
neuroendocrine phenotype, suggesting JAK/STAT activation coincides 
with development of a high plasticity intermediate state that enables 
reprogramming to alternative lineages. In lung cancer, JAK/STAT 
activation in ELM4-ALK condensates is essential for mediating the AST 
[111]. Inhibition of JAK activity decreases expression of squamous 
lineage markers and increases the sensitivity of ALK-driven tumors to 
lorlatinib. Specifically, STAT3 activation is responsible for driving AST in 
EML4-ALK driven lung cancer. A JAK/STAT dependent cell state has also 
recently been identified in IBC [119]. Phospho-STAT3 ChIP sequencing 
of paclitaxel/doxorubicin resistant IBC lines shows a significant 
enrichment of EMP-related genes including ZEB2 and BCL3. 
Furthermore, treatment-resistant IBC cell lines express a mesenchymal 
transcriptional program indicative of a luminal to mesenchymal switch. 
Progression to this mesenchymal cell state is hindered both by JAK 
inhibition alone and combined with chemotherapy [119]. JAK/STAT 
signaling also promotes increased stemness following the inactivation 
of Notch signaling in oral cancer cells [195]. In gastric cancer, JAK/STAT 
signaling has been identified as an important driver of ADAR1-based 
RNA editing which is itself associated with greater chemotherapeutic 
resistance and stemness [196]. Leukemia Inhibitory Factor (LIF) has 
been shown recently to inhibit gastric cancer EMP and stemness in a 
JAK/STAT dependent manner [197]. Intriguingly, Chan et al. found that 
the LIF-LIFR ligand-receptor pair is one of the most enriched in PCa 
organoids exhibiting phenotypic plasticity. These observations indicate 
inflammatory signaling, particularly JAK/STAT activation, is recurrently 
associated with phenotypic plasticity across a range of different cancers. 
How JAK/STAT activation enables this transcriptional plasticity is not 
entirely understood. 

Transforming growth factor beta (TGF-β) is a potent cytokine that 
regulates early development, induces plasticity through EMP, and can 
have major effects on the immune system [198]. TGF-β is known to play 
a crucial role in normal wound healing, suppressing initial inflammation 
and mediating the repair of injured tissue [199,200]. TGF-β signaling 
also impacts numerous cancer types including those arising in the 
pancreas, liver, breast, and lung among others [201–203]. Some work 
suggests a direct role for TGF-β signaling in a phenotypic plasticity. TGF-
β signaling silences the expression of the histone methyltransferase 
KMT2D via the upregulation of miR-147b [204]. Lu et al. has found that 
loss of KMT2D expression leads to increased production of activin A, 
another member of the TGF-β cytokine family. Activin A activates non-
canonical p38-MAPK signaling, promoting pancreatic tumor cell 
plasticity and greater metastatic potential. Thus, multiple members of 
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the TGF-β cytokine superfamily may influence phenotypic plasticity. 
Blockade of TGF-β in pancreatic cancer suppresses the basal phenotypic 
state in favor of the classical phenotypic state [205]. In breast cancer, 
TGF-β works in tangent with AURKA to mediate increased activity of 
ALDH1, a known marker of stemness [206–208]. SNAI1 expression 
downstream of TGF-β and AURKA activity induces ALDH1, promoting 
greater chemoresistance and increased capacity for self-renewal. Fan et 
al. determined that TGF-β signaling is negatively regulated by lncRNA 
LITATS1-mediated proteasomal degradation of type I TGF-β receptors 
[209]. Additionally, when LITATS1 is depleted, a dramatic increase in 
invasiveness and EMP ensues, suggesting TGF-β signaling is driving 
greater plasticity. In PCa, loss of FOXA1 leads to increased TGF-β3 
production, promoting EMP and a more basal-like lineage state 
[210,211]. However, another group has demonstrated that prostate 
tumors lacking the TGF-β type II receptor (Tgfbr2) express increased 
levels of stem cell and basal epithelial marker genes [212]. Furthermore, 
mutations in PTEN and Tgfbr2 lead to an increase in metastatic burden, 
suggesting that loss of TGF-β signaling does not hinder EMP in the PCa 
setting. These studies suggest a more complex and potentially context 
dependent role for TGF-β signaling in PCa plasticity that requires  
further study. 

Notch signaling is a major architect of development and repair and its 
numerous functions have been reviewed elsewhere [213]. Notch 
signaling plays an important role in plasticity-mediated repair of several 
normal tissue types including lung alveoli and intestinal crypts [214,215]. 
Recent evidence indicates a role for Notch signaling in cancer lineage 
reprogramming. Ku et al. found that Notch signaling is downregulated 
during reprogramming of PCa to NEPC [216]. Furthermore, forced 
Notch signaling suppressed NEPC development while maintaining PCa 
tumors in a more inflammatory state with significant effects on the 
tumor immune microenvironment. This is potentially consistent with 
the known roles of Notch signaling in the immune system [217]. These 
observations suggest the lineage state assumed by plastic cancer cells 
may significantly impact the tumor microenvironment. Similar findings 
have been made in breast cancer showing that Notch signaling 
influences cancer phenotypic plasticity [218]. In this case, FRMD3 
mediated activation of Notch signaling promotes basal-to-luminal 
differentiation. Consequently, loss of FRMD3 in mammary epithelial 
cells leads to decreased Notch signaling and increasing stemness that 
promotes TNBC development. 

4.4 Other mediators of plasticity 

DNMTs and HMTs are the major enzymatic writers of DNA and histone 
modifications, respectively, that regulate chromatin structure and 
accessibility. Several of these epigenetic regulatory enzymes are 
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implicated in phenotypic plasticity. EZH2 encodes the major catalytic 
protein of the PRC2 complex that tri-methylates histone H3 at K27, a 
chromatin mark associated with transcriptional repression. This 
complex has been prominently implicated in cancer progression (for 
review see Liu and Yang) [219]. EZH2 mediated regulation of chromatin 
accessibility has also been implicated in phenotypic plasticity. Berger et 
al. shows that EZH2-inhibition can rescue luminal gene expression that 
has been suppressed by N-Myc activity [100]. EZH2 has also been shown 
to interact with ASCL1 to promote chromatin remodeling [185]. Recent 
work from Venkadakrishnan and colleagues show many TFs associated 
with neuroendocrine differentiation, such as ASCL1 and NEUROD1, are 
silenced via H3K27me3 in PCa but not in NEPC. Furthermore, EZH2 
inhibition upregulates NEPC TF activity at promoters that are normally 
bivalent in the absence of EZH2 inhibition [220]. Modulation of EZH2 
activity through phosphorylation is an important means of regulating 
EZH2-associated plasticity, highlighted in work by Nouruzi et al. [18,185]. 
A mechanism linking ADT and increased EZH2 activity has been 
described by Kaarijärvi et al. [221]. DPYSL5, a protein involved in 
neuronal differentiation, is actively suppressed by androgen signaling. 
When androgen signaling is lost, increased DPYSL5 promotes increased 
EZH2 activity and subsequent upregulation of NEPC-linked TFs like 
ASCL1 and Sox2. Contrasting roles for EZH2 in inhibiting or promoting 
NEPC TFs proposed by Venkadakrishnan et al. and Kaarijärvi et al., 
respectively, suggest a nuanced role for EZH2 in progression towards 
NEPC that requires further study. 

LSD1 (also known as KDM1A) is a well-known histone demethylase that 
has been implicated in cancer phenotypic plasticity [222]. Han et al. has 
demonstrated that LSD1 activity is essential for full elaboration of the 
E2F1 mediated transcriptional program in Rb1 deficient PCa [223]. This 
study implicates LSD1 as an important regulator of chromatin 
interactions in the progression from PCa to NEPC. FOXA2-driven 
plasticity in AR-independent PCa is also dependent on LSD1 activity [97]. 
Mandl et al. recently has shown that LSD1 inhibition decreases ASCL1 
dependent transcriptional activity through de-repression of YAP1. This 
suggests functional LSD1 is important for the ability of ASCL1 to 
promote neuroendocrine differentiation [224]. LSD1 activity has also 
been found to mediate plasticity in breast cancer [225,226]. In general, 
the effectiveness of LSD1 inhibitors in treating cancers seems to 
correlate with their plasticity [227]. 

DNMT1 is an important DNMT that is responsible for maintenance of 
methylation during DNA replication of the genome [228]. DNMT1 
activity is perhaps even more important for the transcriptional stability 
of cancer cells undergoing continuous cell division cycles. Expression of 
DNMT1 often increases during cancer progression, including during the 
transition from PCa to NEPC. DNMT1 has also been implicated 
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functionally in PCa phenotypic plasticity, suggesting that targeting 
DNMT1 activity and the aberrant DNA methylation it produces is a 
potential therapeutic strategy for treating NEPC [229,230]. DNMT1 
activity has also been functionally implicated in breast and pancreatic 
cancer plasticity [231–233]. 

Mucin-1 (MUC1-C) is a transmembrane cell surface protein that plays an 
important role in maintaining the mucosal barrier of epithelial cells. 
Aberrant glycosylation of MUC1-C in cancer has been implicated in 
cancer invasion and metastasis [234]. Evidence from the literature 
suggest that MUC1-C can play an important role in neuroendocrine 
plasticity [102,235]. MUC1-C suppresses p53 activity, promotes activity 
of pluripotent TFs downstream of BRN2, and upregulates the activity of 
the Baf chromatin remodeling complex [235–237]. MUC1-C has recently 
been implicated in Osimertinib resistance, promoting EMP and 
proliferative signaling in EGFR-mutant NSCLC [238]. MUC1-C also 
promotes plasticity in TNBC [239,240]. A recent review highlights that 
chronic activation of MUC1-C in wound healing is an impetus for 
epigenetic rewiring and progression towards cancer [241]. Given that 
MUC1-C is a surface protein, MUC1-C may be a useful target for 
suppressing cancer phenotypic plasticity through a number of 
immunotherapeutic approaches currently in development. 

5. Discussion 

This review highlights the extensive crosstalk that exists between 
genetic alterations, TFs, signaling pathways (cancer cell intrinsic and 
extrinsic), and epigenetic regulators that complicate our understanding 
of cancer phenotypic plasticity (Figure 3). Despite this complexity, a 
comparison of pathways involved in normal and neoplastic tissue 
reveals some convergence. The TF ASCL1 plays a direct role in 
maintenance of CBC cells in intestinal crypts during normal homeostasis 
and is also important for neuroendocrine lineage reprogramming in 
several cancer types.  Notch signaling modulates plasticity to facilitate 
repair of damaged normal tissues while also suppressing 
neuroendocrine reprogramming in cancer. Major pluripotency TFs like 
Sox2 are important for facultative stem cell plasticity in normal tissue 
while also driving cancer phenotypic plasticity. Inflammatory signaling 
is involved in normal cell plasticity during tissue repair and has also 
been functionally linked to phenotypic plasticity in multiple cancer 
contexts. MUC1-C activity connects plasticity in normal wound healing 
with cancer phenotypic plasticity, recapitulating the idea that cancer is 
a “wound that does not heal” [242]. This convergence highlights the 
notion that cancer cells use genetically programmed plasticity 
programs in aberrant ways to adapt to the unpredictable and highly 
selective pressures they face. 
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One major difference between normal and neoplastic cell plasticity is 
that cancer cells frequently acquire somatic genetic alterations. This 
raises the possibility that some genetic alterations recurrent in 
advanced cancers may be selected because they facilitate aberrant 
activation of phenotypic plasticity programs. Using Waddington’s 
metaphor, phenotypic plasticity associated genetic alterations can be 
classified in two non-mutually exclusive categories. Some mutations 
may flatten the epigenetic landscape overall, driving increased 
phenotypic plasticity by making transitions between different 
phenotypic states more likely. Other genetic alterations may change the 
landscape by increasing or decreasing the depth of valleys specifying 
individual phenotypic states, decreasing or increasing the probability a 
cancer cell will assume a specific phenotypic state. Loss of TSGs like RB1, 
TP53, and PTEN seem to fall in the first category. Clinical data indicate 
loss of these TSGs are highly recurrent in treatment associated 
neuroendocrine cancer lineage variants, but TSG loss is not sufficient 
because not all affected cancers undergo detectable lineage 
reprogramming. Further, loss of these TSG in GEMMs of prostate cancer 
develop adenocarcinomas along with rare cells undergoing 
reprogramming into multiple lineage variants, including NEPC that 
expands the fastest to yield lethal disease. Other genetic alterations 
may fall closer to the second category. C-Myc, for example, can drive 
SCLC to a unique lineage state, but only in collaboration with plasticity 
afforded by TSG loss [243,244]. 

A number of incompletely resolved questions remain for the cancer 
phenotypic plasticity field. Related to the discussion above, one 
question is how do genetic alterations recurrent in advanced cancer 
actually contribute to phenotypic plasticity at the molecular level. 
Phenotypic plasticity is defined here by transcriptional heterogeneity 
and instability. The molecular basis of this transcriptional heterogeneity 
is not well defined, but by analogy to observations with iPSCs may 
involve an increase in bivalent, stem cell-like chromatin state. Another 
unresolved question is how inflammatory signaling drives phenotypic 
plasticity. Loss of TSGs often result in elevated cancer cell intrinsic 
inflammatory signaling, so it is possible effects on TSG loss in 
phenotypic plasticity are mediated by inflammatory signaling, at least in 
part. Currently, it is unclear how this inflammatory signaling causes the 
transcriptional instability associated with phenotypic plasticity. Another 
important question yet to be resolved is the relationship between 
cancer phenotypic variants detected in both clinical samples and 
experimental models. Do these different variants represent different 
stages of progression across a common, lineage phenotypic 
evolutionary path? In some experimental models, there is evidence to 
support this conclusion. Or do they represent independent evolutionary 
paths that may yield cancers with very different clinical outcomes? The 
answers to these questions will help clarify the molecular basis of cancer 
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phenotypic plasticity, information that will be critical for developing 
therapeutic approaches to effectively target phenotypic plasticity for 
clinical benefit. 

Robust quantitative measures of phenotypic plasticity are needed to 
resolve these questions. An ideal measure would monitor the 
phenotype of individual live cells over time in an unbiased manner, 
quantitating how stable a phenotype is to stochastic fluctuation or 
environmental perturbation. The primary approach used today, 
however, is based on inference from single cell-transcriptomic data. The 
transcriptome of a population of individual cells is measured at a given 
timepoint, and their transcriptional heterogeneity is quantitated using 
existing diversity indices. Transcriptional heterogeneity at a given point 
in time is assumed to be positively correlated with phenotypic plasticity 
of cells within the population. As the types of single cell phenotypic 
measures expands to include protein, chromatin, DNA methylation, etc., 
these inferences will undoubtedly become more sophisticated in 
deciphering the molecular underpinnings of this transcriptional 
diversity. Coupling these single cell measures with cell lineage 
barcoding or CRISPR based time recording approaches promise to allow 
phenotypic measurements in clonal lineages of cells over time, getting 
nearer to the ideal of unbiased live cell recording. Finally, there is clear 
evidence that the growth environment can influence the phenotype of 
plastic cancer cells. For example, mouse prostate organoid models of 
TSG deletion exhibit phenotypic plasticity but do not undergo 
neuroendocrine reprogramming in vitro. They do undergo 
neuroendocrine reprogramming when transplanted in vivo, 
demonstrating unique features of the in vivo tumor microenvironment 
contribute to NEPC reprogramming. Spatial transcriptomics at the 
single cell level will increasingly be used to assess the effects of the 
tumor growth environment on the phenotype assumed by plastic 
cancer cells, and vice versa. 

Somatic genetic evolution clearly drives intratumoral heterogeneity that 
enables cancer progression and acquired therapeutic resistance. Given 
the varied, unpredictable, and highly selective pressures cancer cells 
face during disease progression, metastasis, and therapy, somatic 
genetic evolution alone may be insufficient to account for their 
remarkable adaptability. It is increasingly appreciated that epigenetic 
plasticity, a genetically encoded trait essential for normal development 
and homeostasis, can be aberrantly deployed by cancer cells to increase 
their adaptability. The next generation of precision and molecularly 
targeted therapies will need to address this plasticity to improve cancer 
patient outcomes and make further progress toward cures. 
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